Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Usage Information

Combined modulation of polycomb and trithorax genes rejuvenates β cell replication
Josie X. Zhou, … , Seung K. Kim, Anil Bhushan
Josie X. Zhou, … , Seung K. Kim, Anil Bhushan
Published November 1, 2013; First published October 8, 2013
Citation Information: J Clin Invest. 2013;123(11):4849-4858. https://doi.org/10.1172/JCI69468.
View: Text | PDF
Categories: Research Article Metabolism

Combined modulation of polycomb and trithorax genes rejuvenates β cell replication

  • Text
  • PDF
Abstract

Inadequate functional β cell mass underlies both type 1 and type 2 diabetes. β Cell growth and regeneration also decrease with age through mechanisms that are not fully understood. Age-dependent loss of enhancer of zeste homolog 2 (EZH2) prevents adult β cell replication through derepression of the gene encoding cyclin-dependent kinase inhibitor 2a (INK4a). We investigated whether replenishing EZH2 could reverse the age-dependent increase of Ink4a transcription. We generated an inducible pancreatic β cell–specific Ezh2 transgenic mouse model and showed that transgene expression of Ezh2 was sufficient to increase β cell replication and regeneration in young adult mice. In mice older than 8 months, induction of Ezh2 was unable to repress Ink4a. Older mice had an enrichment of a trithorax group (TrxG) protein complex at the Ink4a locus. Knockdown of TrxG complex components, in conjunction with expression of Ezh2, resulted in Ink4a repression and increased replication of β cells in aged mice. These results indicate that combined modulation of polycomb group proteins, such as EZH2, along with TrxG proteins to repress Ink4a can rejuvenate the replication capacity of aged β cells. This study provides potential therapeutic targets for expansion of adult β cell mass.

Authors

Josie X. Zhou, Sangeeta Dhawan, Hualin Fu, Emily Snyder, Rita Bottino, Sharmistha Kundu, Seung K. Kim, Anil Bhushan

×

Usage data is cumulative from December 2018 through December 2019.

Usage JCI PMC
Text version 397 66
PDF 67 64
Figure 66 0
Supplemental data 21 9
Citation downloads 9 0
Totals 560 139
Total Views 699
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts